Effect of nanoscale confinement on glass transition of polystyrene domains from self-assembly of block copolymers.

نویسندگان

  • C G Robertson
  • T E Hogan
  • M Rackaitis
  • J E Puskas
  • X Wang
چکیده

The understanding of size-dependent properties is key to the implementation of nanotechnology. One controversial and unresolved topic is the influence of characteristic size on the glass transition temperature (T(g)) for ultrathin films and other nanoscale geometries. We show that T(g) does depend on size for polystyrene spherical domains with diameters from 20 to 70 nm which are formed from phase separation of diblock copolymers containing a poly(styrene-co-butadiene) soft block and a polystyrene hard block. A comparison of our data with published results on other block copolymer systems indicates that the size dependence of T(g) is a consequence of diffuse interfaces and does not reflect an intrinsic size effect. This is supported by our measurements on 27 nm polystyrene domains in a styrene-isobutylene-styrene triblock copolymer which indicate only a small T(g) depression (3 K) compared to bulk behavior. We expect no effect of size on T(g) in the limit as the solubility parameters of the hard and soft blocks diverge from each other. This strongly segregated limiting behavior agrees with published data for dry and aqueous suspensions of small polystyrene spheres but is in sharp contrast to the strong influence of film thickness on T(g) noted in the literature for free standing ultrathin polystyrene films.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hierarchical assembly and compliance of aligned nanoscale polymer cylinders in confinement.

We report a combined top-down/bottom-up hierarchical approach to fabricate massively parallel arrays of aligned nanoscale domains by means of the self-assembly of asymmetric polystyrene-block-poly(ethylene-alt-propylene) diblock copolymers. Silicon nitride grating substrates of various depths and periodicities are used to template the alignment of the high-aspect-ratio cylindrical polymer domai...

متن کامل

Rule-based Directed Self-assembly of Circuit-like Block copolymer Patterns

Templated self-assembly of block copolymers using topographic templates is attractive because it can generate dense nanoscale patterns over a large area with a periodicity down to 10 nm. In our previous work, regular patterns were achieved by using a polystyrene-bpolydimethylsiloxane (PS-b-PDMS) block copolymer and topographic templates . However, more complex block-copolymer patterns required ...

متن کامل

Rule-based Directed Self-assembly of Circuit-like Block copolymer Patterns

Templated self-assembly of block copolymers using topographic templates is attractive because it can generate dense nanoscale patterns over a large area with a periodicity down to 10 nm. In our previous work, regular patterns were achieved by using a polystyrene-bpolydimethylsiloxane (PS-b-PDMS) block copolymer and topographic templates . However, more complex block-copolymer patterns required ...

متن کامل

Rule-based Directed Self-assembly of Circuit-like Block copolymer Patterns

Templated self-assembly of block copolymers using topographic templates is attractive because it can generate dense nanoscale patterns over a large area with a periodicity down to 10 nm. In our previous work, regular patterns were achieved by using a polystyrene-bpolydimethylsiloxane (PS-b-PDMS) block copolymer and topographic templates . However, more complex block-copolymer patterns required ...

متن کامل

Block copolymer assembly on nanoscale patterns of polymer brushes formed by electrohydrodynamic jet printing.

Fundamental understanding of the self-assembly of domains in block copolymers (BCPs) and capabilities in control of these processes are important for their use as nanoscale templates in various applications. This paper focuses on the self-assembly of spin-cast and printed poly(styrene-block-methyl methacrylate) BCPs on patterned surface wetting layers formed by electrohydrodynamic jet printing ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of chemical physics

دوره 132 10  شماره 

صفحات  -

تاریخ انتشار 2010